Cộng trừ đa thức một biến

A: Bài tập cơ bản

Câu 1: Chọn đáp án đúng nhất

Cho hai đa thức M(x) = x²+x−1 và N(x) = x+1

Kết quả của phép cộng hai đa thức trên là:

A. x²

B. x²+2x−2

C. 2x²−1

D. x²+2x

Hiển thị phần đáp án

M(x) + N(x) = (x²+x−1)+(x+1)

                   = x²+x−1+x+1

                   = x²+x+x−1+1

                   = x²+2x

Đáp án đúng là   D. x²+2x


 

Câu 2: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = x²+x−1  và N(x) = x+1

Kết quả của phép tính M(x) - N(x) là

A. x²−2

B. x²+2x

C. x²−2x−2

D. x²−2x+2

Hiển thị phần đáp án

M(x) - Nx) = (x²+x−1)−(x+1)

                 = x²+x−1−x−1

                 = x²+x−x−1−1

                 = x²−2

Đáp án đúng là   A. x²−2


 

Câu 3: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = 2x²+x−1  và N(x) = 2x²+3

Kết quả của phép cộng hai đa thức trên là

A. 4x²+2

B. 4x²+x+2

C. x²−x−4

D. 4x²+x−4

Hiển thị phần đáp án

M(x) + N(x) = (2x²+x−1)+(2x²+3)

                   = 2x²+x−1+2x²+3

                   = 2x²+2x²+x−1+3

                   = 4x²+x+2

Đáp án đúng là   B. 4x²+x+2


 

Câu 4: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = 2x²+x−1 và N(x) = 2x²+3

Kết quả của phép tính M(x) - N(x) là

A. 4x²−x−4

B. 2x²+x−4

C. x−4

D. x+2

Hiển thị phần đáp án

M(x) - N(x) = (2x²+x−1)−(2x²+3)

                  = 2x²+x−1−2x²−3

                  = 2x²−2x²+x−1−3

                  =                  x−4

Đáp án đúng là  C. x−4


 

Câu 5: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = 3x²−2x+4  và N(x) = 5x²+x

Kết quả của   M(x) + N(x) là

A. 8x²−x+4

B. 8x²−3x+4

C. −2x²−3x−4

D. −2x²−3x+4

Hiển thị phần đáp án

M(x) + N(x) = (3x²−2x+4)+(5x²+x)

                   = 3x²−2x+4+5x²+x

                   = 3x²+5x²−2x+x+4

                   = 8x²−x+4

Đáp án đúng là   A. 8x²−x+4


 

Câu 6: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = 3x²−2x+4  và N(x) = 5x²+x

Kết quả của   M(x) - N(x) là

A. 8x²−x+4

B. 8x²−3x+4

C. −2x²−3x−4

D. −2x²−3x+4

Hiển thị phần đáp án

M(x) - N(x) = (3x²−2x+4)−(5x²+x)

                   = 3x²−2x+4−5x²−x

                   = 3x²−5x²−2x−x+4

                   = −2x²−3x+4

Đáp án đúng là  D. −2x²−3x+4


 

Câu 7: Chọn đáp án đúng nhất

Chọn câu đúng nhất

Phép cộng các đa thức có những tính chất nào sau đây?

A. Tính chất giao hoán

B. Tính chất kết hợp

C. Tính chất cộng với đa thức không

D. Cả ba tính chất trên

Hiển thị phần đáp án

Đáp án đúng là  D. Cả ba tính chất trên


 

Câu 8: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = \(\frac{1}{2}x^2+\frac{3}{4}x−5\) và N(x) = \(\frac{3}{2}x^2+\frac{1}{4}x−1\)

Kết quả của   M(x) + N(x) là

A. 2x²+x−6

B. −x²+x−4

C. −2x²+x+6

D. x²−x+4

Hiển thị phần đáp án

M(x) + N(x) = \((\frac{1}{2}x^2+\frac{3}{4}x−5)+(\frac{3}{2}x^2+\frac{1}{4}x−1)\)

                   = \(\frac{1}{2}x^2+\frac{3}{4}x−5+\frac{3}{2}x^2+\frac{1}{4}x−1\)

                   = \(\frac{1}{2}x^2+\frac{3}{2}x^2+\frac{3}{4}x+\frac{1}{4}x−5−1\)

                   = \(2x^2+x−6\)

Đáp án đúng là  A. \(2x^2+x−6\)


 

Câu 9: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = \(\frac{1}{2}x^2+\frac{3}{4}x−5\) và N(x) = \(\frac{3}{2}x^2+\frac{1}{4}x−1\)

Kết quả của   M(x) - N(x) là

A. \(2x^2+x−6\)

B. \(−x^2+12x−4\)

C. \(−2x^2+x+6\)

D. \(x^2−12x+4\)

Hiển thị phần đáp án

M(x) - N(x) = \((\frac{1}{2}x^2+\frac{3}{4}x−5)−(\frac{3}{2}x^2+\frac{1}{4}x−1)\)

                   = \(\frac{1}{2}x^2+\frac{3}{4}x−5−\frac{3}{2}x^2−\frac{1}{4}x+1\)

                   = \(\frac{1}{2}x^2−\frac{3}{2}x^2+\frac{3}{4}x−\frac{1}{4}x−5+1\)

                   = \(−x^2+\frac{1}{2}x−4\)

Đáp án đúng là   B. \(−x^2+\frac{1}{2}x−4\)


 

Câu 10: Chọn đáp án đúng nhất

Cho hai đa thức

M(x) = x²+3x−1 và N(x) = −2x−1

Kết quả của phép tính M(x) - N(x) là

A. x²+5x−2

B. x²+5x

C. x²−x

D. x²−x−2

Hiển thị phần đáp án

M(x) - Nx) = (x²+3x−1)−(−2x−1)

                 =  x²+3x−1+2x+1

                 = x²+3x+2x−1+1

                 = x²+5x

Đáp án đúng là     B. x²+5x


 

B: Bài tập trung bình

Câu 1: Chọn đáp án đúng nhất

Cho tam giác ABC với các độ dài như hình vẽ. Viết biểu thức tính chu vi tam giác ABC.

A. 5x−6

B. 5x−4

C. 5x+4

D. 5x+6

Hiển thị phần đáp án

Chu vi tam giác ABC là

    AB +    BC    + CA

=x+(x−1)+(3x−5)

=x+x−1+3x−5

=x+x+3x−1−5

=5x−6

Vậy chu vi tam giác ABC là    5x−6

Đáp án đúng là   A. 5x−6


 

Câu 2: Chọn đáp án đúng nhất

Kết quả của phép tính \((−3x^3−2x^2+x−1)+(3x^2−2x−5)\)  là

A. \(−3x^3−4x^2−2x−6\)

B. \(−6x^3+3x^2−x−6\)

C. \(−3x^3+x^2−x−6\)

D. \(−3x^3−2x^2−3x+6\)

Hiển thị phần đáp án

\( (−3x^3−2x^2+x−1)+(3x^2−2x−5)\)

= \(−3x^3−2x^2+x−1+3x^2−2x−5\)

= \(−3x^3−2x^2+3x^2+x−2x−1−5\)

= \(−3x^3+x^2−x−6\)

Đáp án đúng là   C. \(−3x^3+x^2−x−6\)


 

Câu 3: Chọn đáp án đúng nhất

Kết quả của phép tính \((−3x^3−2x^2+x−1)−(3x^2−2x−5)\)  là

A. \(−3x^3−5x^2+3x+4\)

B. \(−3x^3+5x^2−3x−4\)

C. \(−3x^3−5x^2−3x+4\)

D. \(−3x^3+5x^2+3x−4\)

Hiển thị phần đáp án

   \((−3x^3−2x^2+x−1)−(3x^2−2x−5)\)

= \(−3x^3−2x^2+x−1−3x^2+2x+5\)

=\( −3x^3−2x^2−3x^2+x+2x−1+5\)

= \(−3x^3−5x^2+3x+4\)

Đáp án đúng là   A. \(−3x^3−5x^2+3x+4\)


 

Câu 4: Chọn đáp án đúng nhất

Cho tam giác ABC với các độ dài như hình vẽ. Viết biểu thức tính chu vi tam giác ABC.

A. 8x−2

B. −8x+2

C. −8x

D. 8x

Hiển thị phần đáp án

Chu vi tam giác ABC là

   AB +     BC   + CA

= 2x+(3x−1)+(3x+1)

= 2x+3x−1+3x+1

= 2x+3x+3x−1+1

= 8x

Đáp án đúng là   D. 8x


 

Câu 5: Điền đáp án đúng vào ô trống

Tìm hệ số cao nhất của đa thức P(x) biết 

P(x) = \((−5x^3−4x^2+3x−1)−(x^4−3x^3−4x^2−3x+2)\)

Đáp số: Hệ số cao nhất của P(x) là …..

Hiển thị phần đáp án

P(x) = \((−5x^3−4x^2+3x−1)−(x^4−3x^3−4x^2−3x+2)\)

       = \(−5x^3−4x^2+3x−1−x^4+3x^3+4x^2+3x−2\)

       = \(−x^4−5x^3+3x^3−4x^2+4x^2+3x+3x−1−2\)

       = \(−x^4−2x^3+6x−3\)

Vậy hệ số cao nhất của P(x) là   -1

Số cần điền là   -1


 

Câu 6: Điền đáp án đúng vào ô trống

Tìm hệ số tự do của đa thức P(x) biết 

P(x) =  \((−5x^3−4x^2+3x−1)−(x^4−3x^3−4x^2−3x+2)\)

Đáp số: Hệ số tự do của P(x) là …..

Hiển thị phần đáp án

P(x) = \((−5x^3−4x^2+3x−1)−(x^4−3x^3−4x^2−3x+2)\)

       = \(−5x^3−4x^2+3x−1−x^4+3x^3+4x^2+3x−2\)

       = \(−x^4−5x^3+3x^3−4x^2+4x^2+3x+3x−1−2.\)

       = \(−x^4−2x^3+6x−3\)

Vậy hệ số tự do của P(x) là   -3

Số cần điền là   -3


 

Câu 7: Chọn đáp án đúng nhất

Biết  P(x) = \((2x^4−x^3+4x^2−2x)+(−2x^4+x^3−8x^2+5x−10)\) , bậc của P(x) là

A. -4

B. -10

C. 2

D. 1

Hiển thị phần đáp án

P(x) = \((2x^4−x^3+4x^2−2x)+(−2x^4+x^3−8x^2+5x−10)\)

        = \(2x^4−x^3+4x^2−2x−2x^4+x^3−8x^2+5x−10\)

        = \(2x^4−2x^4−x^3+x^3+4x^2−8x^2−2x+5x−10\)

        = \(−4x^2+3x−10\)

Vậy bậc của đa thức P(x) là  2

Đáp án đúng là   C. 2


 

Câu 8: Chọn đáp án đúng nhất

Cho P(x) = \((−x^4+5x^3−4x^2+10x−15)−(−6x^4−3x^3+2x^2−5x+6)\)

Hệ số cao nhất của P(x) là

A. -6

B. 5

C. -21

D. 4

Hiển thị phần đáp án

P(x) = \((−x^4+5x^3−4x^2+10x−15)−(−6x^4−3x^3+2x^2−5x+6)\)

       = \(−x^4+5x^3−4x^2+10x−15+6x^4+3x^3−2x^2+5x−6\)

       = \(−x^4+6x^4+5x^3+3x^3−4x^2−2x^2+10x+5x−15−6\)

       = \(5x^4+8x^3−6x^2+15x−21\)

Vậy hệ số cao nhất của P(x) là   5

Đáp án đúng là  B. 5


 

Câu 9: Chọn đáp án đúng nhất

Cho P(x) = \((−x^4+5x^3−4x^2+10x−15)−(−6x^4−3x^3+2x^2−5x+6).\)

Xác định hệ số tự do của đa thức P(x).

A. -21

B. 5

C. 4

D. -15

Hiển thị phần đáp án

P(x) = \((−x^4+5x^3−4x^2+10x−15)−(−6x^4−3x^3+2x^2−5x+6)\)

       = \(−x^4+5x^3−4x^2+10x−15+6x^4+3x^3−2x^2+5x−6\)

       = \(−x^4+6x^4+5x^3+3x^3−4x^2−2x^2+10x+5x−15−6\)

       = \(5x^4+8x^3−6x^2+15x−21\)

Vậy hệ số tự do của P(x) là   -21

Đáp án đúng là   A. -21


 

Câu 10: Chọn đáp án đúng nhất

Biết P(x) = \((−x^4+5x^3−4x^2+10x−15)−(−6x^4−3x^3+2x^2−5x+6)\) , bậc của P(x) là

A. -21

B. 5

C. 4

D. -15

Hiển thị phần đáp án

P(x) = \((−x^4+5x^3−4x^2+10x−15)−(−6x^4−3x^3+2x^2−5x+6)\)

       = \(−x^4+5x^3−4x^2+10x−15+6x^4+3x^3−2x^2+5x−6\)

       = \(−x^4+6x^4+5x^3+3x^3−4x^2−2x^2+10x+5x−15−6\)

       = \(5x^4+8x^3−6x^2+15x−21\)

Vậy bậc của P(x) là   4

Đáp án đúng là   C. 4


 

C: Bài tập nâng cao

Câu 1: Chọn đáp án đúng nhất

Viết đa thức biểu diễn phần diện tích S màu xanh phía trong khung trang ở hình dưới

A. S = 48 - 4x²

B. S = 4x²

C. S = 48 - 8x²

D. S = 8x²

Hiển thị phần đáp án

Diện tích của hình chữ nhật bên ngoài là

6 . 8 = 48

Vì các tam giác nhỏ màu trắng là các tam giác vuông có hai cạnh góc vuông lần lượt là x và 2x nên diện tích của một tam giác nhỏ màu trắng là 

\(\frac{1}{2}\) . x . 2x = x²

Vì bốn tam giác nhỏ bằng nhau nên tổng diện tích các tam giác là 

4 . x² = 4x²  

Diện tích S màu xanh là

S = 48 - 4x²

Đáp án đúng là   A. S = 48 - 4x²


 

Câu 2: Chọn đáp án đúng nhất

Tìm đa thức P biết  M + P = N và 

M = \(x^3−5x^2+x+2\) ; N = \(5x^3−x^2+8x−3\)

A. P = \(4x^3+4x^2+7x−5\)

B. P = \(6x^3−6x^2+9x−1\)

C. P = \(−4x^3−4x^2−7x+5\)

D. P = \(−6x^3+6x^2−9x+1\)

Hiển thị phần đáp án

M + P = N ⇒ P = N - M

Do đó P = \((5x^3−x^2+8x−3) – (x^3−5x^2+x+2)\)

              = \(5x^3−x^2+8x−3−x^3+5x^2−x−2\)

              = \(5x^3−x^3−x^2+5x^2+8x−x−3−2\)

              = \(4x^3+4x^2+7x−5\)

Đáp án đúng là   A. P = \(4x^3+4x^2+7x−5\)


 

Câu 3: Chọn đáp án đúng nhất

Biết M + P = N và M = \(x^3−5x^2+x+2\) ; N = \(5x^3−x^2+8x−3\) .

Hệ số cao nhất của đa thức P là

A. 4

B. 5

C. 0

D. 3

Hiển thị phần đáp án

M + P = N ⇒ P = N - M

Do đó P = \((5x^3−x^2+8x−3) – (x^3−5x^2+x+2)\)

              = \(5x^3−x^2+8x−3−x^3+5x^2−x−2\)

              = \(5x^3−x^3−x^2+5x^2+8x−x−3−2\)

              = \(4x^3+4x^2+7x−5\)

Vậy hệ số cao nhất của P là   4

Đáp án đúng là   A.  4


 

Câu 4: Chọn đáp án đúng nhất

Biết P - M = N và  M = \(x^3−5x^2+x+2\) ; N = \(5x^3−x^2+8x−3\) . Tìm đa thức P

A. P=\(6x^3−6x^2+9x−1\)

B. P=\(−6x^3+6x^2−9x+1\)

C. P=\(4x^3+4x^2+7x−5\)

D. P=\(−4x^3−4x^2−7x+5\)

Hiển thị phần đáp án

Ta có P - M = N

Do đó P = N + M

              = \((5x^3−x^2+8x−3) + (x^3−5x^2+x+2)\)

              = \(5x^3−x^2+8x−3+x^3−5x^2+x+2\)

              = \(5x^3+x^3−x^2−5x^2+8x+x−3+2\)

              = \(6x^3−6x^2+9x−1\)

Đáp án đúng là     A. P=\(6x^3−6x^2+9x−1\)


 

Câu 5: Chọn đáp án đúng nhất

Người ta dự định làm một bể bơi hình chữ nhật có chiều rộng là x mét và chiều dài gấp 2 lần chiều rộng trên một mảnh đất hình chữ nhật. Sơ đồ và kích thước được cho trong hình vẽ. Viết biểu thức biểu thị diện tích phần đất xung quanh bể bơi.

A. -2x² + 70x + 980 m²

B. 2x² + 70x + 980 m²

C. 2x² - 70x - 980 m²

D. -2x² - 70x - 980 m²

Hiển thị phần đáp án

Vì bể bơi có chiều dài gấp đôi chiều rộng nên chiều dài của bể bơi là   2x mét

Diện tích của bể bơi là   x . 2x = 2x²  mét vuông

Mảnh đất có chiều rộng là   5 + x + 9 = x +  5 + 9 = x + 14   mét

Diện tích của mảnh đất là    70 . (x + 14) = 70 . x + 70 . 14 = 70x + 980   mét vuông

Diện tích của phần đất xung quanh bể bơi là

70x + 980 - 2x² = -2x² + 70x + 980   mét vuông

Đáp án đúng là      A. -2x² + 70x + 980  m²


 

Câu 6: Chọn đáp án đúng nhất

Người ta dự định làm một bể bơi hình chữ nhật có chiều rộng là 2x mét và chiều dài gấp 2 lần chiều rộng trên một mảnh đất hình chữ nhật. Sơ đồ và kích thước được cho trong hình vẽ. Viết biểu thức biểu thị diện tích phần đất xung quanh bể bơi.

A. -8x² - 160x + 1360 m²

B. -8x² + 160x + 1360 m²

C. 8x² + 160x + 1360 m²

D. 8x² + 160x - 1360 m²

Hiển thị phần đáp án

Vì bể bơi có chiều dài gấp đôi chiều rộng nên chiều dài của bể bơi là   4x mét

Diện tích của bể bơi là   2x . 4x = 8x²  mét vuông

Mảnh đất có chiều rộng là   7 + 2x + 10 = 2x +  7 + 10 = 2x + 17   mét

Diện tích của mảnh đất là    80 . (2x + 17) = 80 . 2x + 80 . 17 = 160x + 1360   mét vuông

Diện tích của phần đất xung quanh bể bơi là

160x + 1360 - 8x² = -8x² + 160x + 1360   mét vuông

Đáp án đúng là      B. -8x² + 160x + 1360  m²


 

Câu 7: Chọn đáp án đúng nhất

Biết M - P = N và M = \(4x^4−2x^3+x^2−x+5\)  ;  N = \(8x^4+3x^3−4x^2+x+2\). Tìm đa thức P.

A. P = \(−4x^4−5x^3+5x^2−2x+3\)

B. P = \(4x^4+5x^3−5x^2+2x−3\)

C. P = \(−4x^4+5x^3−5x^2−2x+3\)

D. P = \(4x^4−5x^3+5x^2+2x−3\)

Hiển thị phần đáp án

Ta có  M - P = N

Do đó  P = M - N

               = \((4x^4−2x^3+x^2−x+5) – (8x^4+3x^3−4x^2+x+2)\)

               = \(4x^4−2x^3+x^2−x+5−8x^4−3x^3+4x^2−x−2\)

               = \(4x^4−8x^4−2x^3−3x^3+x^2+4x^2−x−x+5−2\)

               = \(−4x^4−5x^3+5x^2−2x+3\)

Đáp án đúng là    A. P = \(−4x^4−5x^3+5x^2−2x+3\)


 

Câu 8: Chọn đáp án đúng nhất

Biết M - P = N và M = \(4x^4−2x^3+x^2−x+5\)  ;  N = \(8x^4+3x^3−4x^2+x+2\). Hệ số tự do của P là

A. 3

B. 4

C. -4

D. -3

Hiển thị phần đáp án

Ta có  M - P = N

Do đó  P = M - N

               = \((4x^4−2x^3+x^2−x+5) – (8x^4+3x^3−4x^2+x+2)\)

               = \(4x^4−2x^3+x^2−x+5−8x^4−3x^3+4x^2−x−2\)

               = \(4x^4−8x^4−2x^3−3x^3+x^2+4x^2−x−x+5−2\)

               = \(−4x^4−5x^3+5x^2−2x+3\)

Hệ số tự do của  P là  3

Đáp án đúng là   A. 3


 

Câu 9: Chọn đáp án đúng nhất

Biết   P + M = N và  M = \(−x^4+5x^3−2x^2+4x−8 \) ;  N = \(x^4+6x^3−3x^2+5x−10\) . Tổng của hệ số cao nhất và hệ số tự do của P là 

A. 2

B. -2

C. 4

D. 0

Hiển thị phần đáp án

Ta có P + M = N

Do đó P = N - M

              = \((x^4+6x^3−3x^2+5x−10) – (−x^4+5x^3−2x^2+4x−8)\)

              = \(x^4+6x^3−3x^2+5x−10+x^4−5x^3+2x^2−4x+8\)

              = \(x^4+x^4+6x^3−5x^3−3x^2+2x^2+5x−4x−10+8\)

              = \(2x^4+x^3−x^2+x−2\)

Hệ số cao nhất của P là   2

Hệ số tự do của P là   -2

Tổng của hệ số cao nhất và hệ số tự do của P là   2 + (-2) = 0

Đáp án đúng là  D. 0


 

Câu 10: Chọn đáp án đúng nhất

Biết   P + M = N và  M = \(−x^4+5x^3−2x^2+4x−8\)  ;  N = \(x^4+6x^3−3x^2+5x−10\). Tính hiệu của hệ số cao nhất và hệ số tự do của P.

A. 0

B. 4

C. 2

D. -2

Hiển thị phần đáp án

Ta có P + M = N

Do đó P = N - M

              = \((x^4+6x^3−3x^2+5x−10) – (−x^4+5x^3−2x^2+4x−8)\)

              = \(x^4+6x^3−3x^2+5x−10+x^4−5x^3+2x^2−4x+8\)

              = \(x^4+x^4+6x^3−5x^3−3x^2+2x^2+5x−4x−10+8\)

              = \(2x^4+x^3−x^2+x−2\)

Hệ số cao nhất của P là   2

Hệ số tự do của P là   -2

Hiệu của hệ số cao nhất và hệ số tự do của P là   2 - (-2) = 2 + 2 = 4

Đáp án đúng là    B. 4